Influence of development, postharvest handling, and storage conditions on the carbohydrate components of sweetpotato (Ipomea batatas Lam.) roots
نویسندگان
چکیده
Changes in total starch and reducing sugar content in five sweetpotato varieties were investigated weekly during root development and following subjection of the roots to different postharvest handling and storage conditions. Freshly harvested (noncured) roots and cured roots (spread under the sun for 4 days at 29-31°C and 63-65% relative humidity [RH]) were separately stored at ambient conditions (23°C-26°C and 70-80% RH) and in a semiunderground pit (19-21°C and 90-95% RH). Changes in pasting properties of flour from sweetpotato roots during storage were analyzed at 14-day intervals. Significant varietal differences (p < .05) in total starch, sucrose, glucose, maltose, and fructose concentrations were registered. The total starch and sucrose content of the roots did not change significantly (p < .05) during root development (72.4 and 7.4%, respectively), whereas the average concentrations of glucose, maltose, and fructose decreased markedly (0.46-0.18%, 0.55-0.28%, and 0.43-0.21%), respectively. Storage led to decrease in total starch content (73-47.7%) and increase in sucrose and glucose concentrations (8.1-11.2% and 0.22-1.57%, respectively). Storage also resulted in reduction in sweetpotato flour pasting viscosities. Curing resulted in increased sucrose and glucose concentrations (9.1-11.2% and 0.45-0.85%, respectively) and marked reduction (p < .05) in total starch content (72.9-47.6%). This resulted in low pasting viscosities compared to flour from storage of uncured roots. These findings show that significant changes occur in the carbohydrate components of sweetpotato roots during storage compared to development and present an opportunity for diverse utilization of flours from sweetpotato roots in the food industry.
منابع مشابه
SRD1 is involved in the auxin-mediated initial thickening growth of storage root by enhancing proliferation of metaxylem and cambium cells in sweetpotato (Ipomoea batatas)
A sweetpotato (Ipomoea batatas cv. 'Jinhongmi') MADS-box protein cDNA (SRD1) has been isolated from an early stage storage root cDNA library. The role of the SRD1 gene in the formation of the storage root in sweetpotato was investigated by an expression pattern analysis and characterization of SRD1-overexpressing (ox) transgenic sweetpotato plants. Transcripts of SRD1 were detected only in root...
متن کاملToxic Ipomeamarone Accumulation in Healthy Parts of Sweetpotato (Ipomoea batatas L. Lam) Storage Roots upon Infection by Rhizopus stolonifer
Furanoterpenoid accumulation in response to microbial attack in rotting sweetpotatoes has long been linked to deaths and lung edema of cattle in the world. However, it is not known whether furanoterpenoid ipomeamarone accumulates in the healthy-looking parts of infected sweetpotato storage roots. This is critical for effective utilization as animal feed and assessment of the potential negative ...
متن کاملStudy of Ulcer Protective Effect of Ipomea batatas (L.) Dietary Tuberous Roots (Sweet Potato)
Peptic ulcer is one of the most prevalent gastrointestinal disorder, commonly occurs in developed countries. The present work was carried out to evaluate antiulcer effect of Ipomoea batatas (L) dietary tuberous roots. The Ethanolic extract of Ipomoea batatas (EEIB) was prepared by dynamic maceration for 7 days at room temperature using 70% ethanol (V/V). The antiulcer activity was evaluated...
متن کاملEffect of GxE Interaction on Root Yield and Beta- carotene Content of Selected Sweetpotato (Ipomoea batatas (L) Lam.) Varieties and Breeding Clones
A multilocational field trial involving nine sweetpotato clones of diverse origins was conducted across four different locations to investigate GxE interaction effects on commercial root yield and beta-carotene pigment content in roots. None of the high-yielding cultivars had satisfactory stability, according to biplots for total root yield based on the additive main effect and multiplicative i...
متن کاملCloning and characterization of an Orange gene that increases carotenoid accumulation and salt stress tolerance in transgenic sweetpotato cultures.
The Orange (Or) gene is responsible for the accumulation of carotenoids in plants. We isolated the Or gene (IbOr) from storage roots of orange-fleshed sweetpotato (Ipomoea batatas L. Lam. cv. Sinhwangmi), and analyzed its function in transgenic sweetpotato calli. The IbOr gene has an open reading frame in the 942 bp cDNA, which encodes a 313-amino acid protein containing a cysteine-rich zinc fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2017